Real Analysis 20-11-06.
§ 3.4 Hausdorff measures.
Def (Haudorff, 1918)
Let
$$A \in \mathbb{R}^{n}$$
, $S > 0$, $S \in [0, \infty)$, define
 $\mathcal{H}_{S}^{S}(A) = \inf \left\{ \sum_{j=1}^{\infty} |A_{i}|^{S} : A \subset \bigcup_{j=1}^{j} A_{i}, |A_{i}| < S \right\}.$
(here $|A_{i}| := dram(A_{i})$)
and
 $\mathcal{H}^{S}(A) = \lim_{S \to 0} \mathcal{H}_{S}^{S}(A) = \sup_{S > 0} \mathcal{H}_{S}^{S}(A).$
(Using the fact $\mathcal{H}_{S}^{S}(A) \mathcal{H}^{S}(A)$
 $us S > 0$)
We call $\mathcal{H}^{S}(A)$ the s-dimensional Hausdorff measure
of A.
Thm 3.7. (a) \mathcal{H}^{S} is a Borel measure on \mathbb{R}^{n} for each $s \ge 0$.
(b) Suppose $\mathcal{H}^{S}(A) < \infty$, then \exists a Borel set B
such that $B > A$ and
 $\mathcal{H}^{S}(B) = \mathcal{H}^{S}(A).$
(C) For any open set $G \subset \mathbb{R}^{n}$,

$$H^{S}(G) = \sup \{ H^{S}(K) : K \text{ compart, } K \subseteq G \}$$

(d) If A is a Borel set with $H^{S}(A) < \omega$,
then $\forall \epsilon > 0$, $\exists \text{ compact } K \subseteq A \text{ such that}$
 $H^{S}(A \setminus K) < \epsilon$.

PF. (a). First we show that H_8^s is an outer measure. This is clear since \mathcal{H}_s^s is generated by a gauge (R_s, 1.1^s), where $\mathcal{R}_{s} = \{ A \subset \mathbb{R}^{n} : \operatorname{diam}(A) < s \}.$ We claim that HS is also an outer measure. clearly, $\mathcal{H}^{s}(\phi) = \lim_{s \to 0} \mathcal{H}^{s}_{s}(\phi) = 0.$ Next for A C U Ai, then $\mathcal{H}^{S}_{\delta}(A) \leq \sum_{i=1}^{\infty} \mathcal{H}^{S}_{\delta}(A_{i})$ $\lesssim \sum_{i=1}^{\infty} H^{s}(A_{i})$ Letting $s \to o$ gives $\mathcal{H}^{s}(A) \leq \sum_{i=1}^{\infty} \mathcal{H}^{s}(A_{i})$ Hence H^s is an outer measure.

Next we show that
$$\partial P^{s}$$
 is a metric outer measure.
To see this, let $A, B \subseteq \mathbb{R}^{n}$ with $d(A, B) > 0$.
Take $o < \delta < \frac{d(A,B)}{4}$.
Suppose $A \cup B \subseteq \bigcup_{k=1}^{\infty} C_{k}$ with $|C_{k}| < \delta$.
Write $A = \{C_{j} : C_{j} \cap A \neq \emptyset\}$
 $\beta = \{C_{j} : C_{j} \cap A \neq \emptyset\}$.
Since $|C_{j}| < \delta$, $d(A,B) > 4\delta$, so no C_{j} intersects
both A and B.
Hence $\sum_{k=1}^{\infty} 1C_{k}|^{s} \ge \sum_{j \in A} |C_{j}|^{s} + \sum_{j \in B} |C_{j}|^{s}$
Notice that $\bigcup_{j \in A} C_{j} \supset A$, $\bigcup_{j \in S} C_{j} \supset B$.
So $\sum_{k=1}^{\infty} |C_{k}|^{s} \ge \partial P_{\delta}^{s}(A) + \partial P_{\delta}^{s}(B)$

Taking infimum over the covers
$$\{C_k\}$$
 of $A \cup B$ gives
 $H_8^S(A \cup B) \ge H_8^S(A) + H_8^S(B)$,
So
 $H_8^S(A \cup B) = H_8^S(A) + H_8^S(B)$.
Letting $S \Rightarrow 0$ gives
 $H_8^S(A \cup B) = H_8^S(A) + H_8^S(B)$.
Hence H^S is a metric outer measure. So it is a Borel measure
This proves (a).
Now we prove (b): If $H_8^S(A) < \infty$, then I a Borel $B > A$
with $H_8^1(B) = H_8^S(A)$.
Notice that for $S > 0$, $H_8^S(A) \le H_8^S(A) < \infty$.
Moreover for $C \subset IR^n$, $|C| = |C|$, where
 \overline{C} denotes the closure of C.
Hence for any integer $R > 0$, by definition, we can
find $\int C_j^R \int_{j=1}^{\infty}$ such that C_j^R are closed sets.

$$\begin{split} |C_{j}^{k}| < \pm, \text{ and } A \subset \bigcup_{j=1}^{\infty} C_{j}^{k}, \text{ moreover} \\ \sum_{j=1}^{\infty} |C_{j}^{k}|^{s} \leq \mathcal{H}_{\mathcal{V}_{k}}^{s}(A) + \pm \mathcal{H}^{s}(A) + \pm \mathcal{H}^{s}(A) + \pm \mathcal{H}^{s}(A) + \frac{1}{k} \\ Define & B_{k} = \bigcup_{j=1}^{\infty} C_{j}^{k}, \text{ then } B_{k} \text{ is Band}, \\ and & A \subset B_{k}. \\ Let & B = \bigcap_{k=1}^{\infty} B_{k}, \text{ then } B \text{ is Band}, B \supset A. \\ Notive that for each & R \in \mathbb{N}, \\ \mathcal{H}_{\mathcal{V}_{k}}^{s}(B) \leq \mathcal{H}_{\mathcal{V}_{k}}^{s}(B_{k}) \\ &\leq \sum_{j=1}^{\infty} |C_{j}^{k}|^{s} \\ &\leq \mathcal{H}^{s}(A) + \frac{1}{k} \\ Lettry & k \Rightarrow \& g_{i} \lor es \\ \mathcal{H}^{s}(B) \leq \mathcal{H}_{i}^{s}(A), \\ and & so \quad \mathcal{H}^{s}(B) = \mathcal{H}^{s}(A). \\ \end{split}$$

(c) For open
$$G \subset \mathbb{R}^{n}$$
,
(*) $\mathcal{H}^{S}(G) = \sup \{ \mathcal{H}^{S}(K) : K \operatorname{compact}, K \subset G \}$.
To prove (*), it suffices to show that
 $\exists a \operatorname{sequene} of \operatorname{compact} \operatorname{sets}(K_{j}) \operatorname{such} \operatorname{that}$
 $K_{j} \uparrow G$
(i.e. $K_{jtl} \supset K_{j}$ and $G = \bigcup_{j=1}^{\infty} K_{j}$)
Thun $\mathcal{H}^{S}(G) = \lim_{j \to \infty} \mathcal{H}^{S}(K_{j})$ by the cty of measure
Now we construct such K_{j} as follows:
 $K_{j} = \{ x \in \mathbb{R}^{n} : d(x, G^{c}) \ge \frac{1}{j}, 1 \le j \}$.
A direct further check shows that $K_{j} \uparrow G$.

(d) If
$$\mathcal{H}^{s}(A) < \infty$$
, A is Bonel, then $\forall \Sigma > 0$,
 $\exists \text{ compact } K \subset A \text{ so that}$
 $\mathcal{H}^{s}(A \setminus K) < \Sigma$.
Actually this is a general property for all
Borel measures on \mathbb{R}^{n} . You are referred to
 $\Box \text{ Evans} - \text{Gan'epy I}$ Lem I-1(i), P. 6.
Prop 3.8. Let $A \subset \mathbb{R}^{n}$. Then
(1) $\mathcal{H}^{s}(TA) = \mathcal{H}^{s}(A)$ if T is a Euclidean
motition (i.e. $Tx = Ux + b$,
 $where U$ is an orthogonal
 transformation).
(2) $\mathcal{H}^{s}(\lambda A) = \lambda^{s} \mathcal{H}^{s}(A)$, $\forall \lambda > 0$.

Prop 3.9. Let
$$A = \mathbb{R}^{n}$$
. Then
(1) $\mathcal{H}^{S}(A) = 0$, if $S > n$
(2) If $\mathcal{H}^{S}(A) < \infty$, then $\mathcal{H}^{t}(A) = 0$ if $t > s$.
(3) If $\mathcal{H}^{S}(A) > 0$, then $\mathcal{H}^{t}(A) = \infty$ if $t < s$.
Let $S > n$.
Pf. (1) We prove that $\mathcal{H}^{S}(\mathbb{R}^{n}) = 0$.
Notice that \mathbb{R}^{n} is the countable union.
 $\bigcup_{z \in \mathbb{Z}^{n}} ([0,1]^{n} + \mathbb{Z})$
It is enough to show that
 $\mathcal{H}^{S}([0,1]^{n}) = 0$. (**)
Notice that for $K \in \mathbb{N}$, $[0,1]^{n}$ can be covered by
 \mathbb{R}^{n} many subcubes of side $\frac{\sqrt{n}}{R}$.

So
$$\mathcal{H}^{t}_{\delta}(A) \leq \sum_{i=1}^{\infty} |C_{i}|^{t} \leq (\mathcal{H}^{s}_{\delta}(A)+i) \cdot \delta^{t-s}$$

 $\leq (\mathcal{H}^{s}(A)+i) \delta^{t-s}$
Letting $\delta \rightarrow 0$ gives
 $\mathcal{H}^{t}(A) = 0$
 $\mathcal{H}^{s}(A)$
 $A \subset IR^{n}$
 $A \subseteq IR^{n}$
 A

Prop 3.10. (a)
$$\mathcal{H}^{0}$$
 is the counting measure on \mathbb{R}^{n} .
(b) $\mathcal{H}^{1} = \mathcal{L}^{1}$ on \mathbb{R} .
(c) $\mathcal{H}^{n} = C(n) \cdot \mathcal{L}^{n}$ on \mathbb{R}^{n} , where
 $C(n)$ is a positive constant.
Pf. (a) follows from the definition.
(b) follows from the fact that
if $A \subset \mathbb{R}$, and $\{C_{i}\}$ is a cover of A ,
then $\{[a_{i}, b_{i}]\}$ is also a cover of A
where $a_{i} = \inf C_{i}$, $b_{i} = \sup C_{i}$
and $\sum |C_{i}|^{1} = \sum_{i} |b_{i} - a_{i}|$.
This property implies that $\mathcal{H}^{1} = \mathcal{L}^{1}$, Using
the fact
 $\mathcal{L}^{1}(A) = \inf \{\sum_{i} |b_{i} - a_{i}| : A \subset \bigcup_{i=1}^{\infty} [a_{i}, b_{i}],$
 $b_{i} - a_{i} < S \}$
 $\forall S > 0$.

(3) Since
$$\mathcal{H}^{n}$$
 is a translation invariant Borel
measure, so $\exists C(n)$ such that
 $\mathcal{H}^{n} = C(n) \mathcal{L}^{n}$.
To see that $C(n)$ is a positive number, it is
enough to show that
 $o < \mathcal{H}^{n}([0,1]^{n}) < \infty$.
By dividing $[0,1]^{n}$ into \mathbb{R}^{n} many subcubes of
side $\frac{1}{K}$ gives
 $\mathcal{H}^{n}_{NT/K}([0,1]^{n}) \leq \mathbb{R}^{n} \cdot \left(\frac{Nn}{K}\right)^{n}$
 $\leq (Nn)^{n} < \infty$
Letting $\mathbb{R} \rightarrow \infty$ gives
 $\mathcal{H}^{n}([0,1]^{n}) \leq (Nn)^{n}$.

Next we estimate the lower bound of
$$\mathcal{H}^{n}([0,1]^{n})$$

Let $\{C_{i}\}$ be a S-cover of $[0,1]^{n}$.
For each i , let B_{i} be a ball of radius diam C_{i}
and so that $B_{i} \supset C_{i}$
Then

$$\sum_{i} |C_{i}|^{n} = \sum_{i}^{n} \sum_{i} |B_{i}|^{n}$$

$$= d_{n} \sum_{i}^{n} \cdot \sum_{i} d_{n}^{n}(B_{i})$$

$$\geq d_{n} \sum_{i}^{n} \cdot d_{n}^{n}([0,1]^{n})$$

$$= d_{n} \sum_{i}^{n}$$